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Dual Reciprocity Boundary Element Analysis for the Laminar 
Forced Heat Convection Problem in Concentric Annulus 

Chang-Yong Choi* 
(Received May 18, 1998) 

This paper presents a study of the dual reciprocity boundary element method (DRBEM) for 

the laminar heat convection problem in a concentric annulus with constant heat flux boundary 

condition. DRBEM is one of the most successful technique used to transform the domain 

integrals arising from the nonhomogeneous term of the Poisson equation into equivalent 

boundary only integrals. This recently developed and highly efficient numerical method is tested 

for the solution accuracy of the fluid flow and heat transfer study in a concentric annulus. Since 

their exact solutions are available, DRBEM solutions are verified with different number of 

boundary element discretizations and internal points. The results obtained in this study are 

discussed with the relative error percentage of velocity and temperature solutions, and potential 

applicabili ty of the method for the more complicated heat convection problems with arbitrary 

duct geometries. 

Key W o r d s :  Dual Reciprocity Boundary Element Method, Concentric Annulus, Laminar 

Heat Convection, Heat Flux Boundary Condition, Numerical Method 

Nomenclature 
b : Heat source-l ike term 

c ; Constant 

f : Interpolating function 

G : Coeff• matrix involving q* 

H : Coefficient matrix involving u* 

L : Number of internal points 

N : Number of boundary elements 

n : Normal unit vector 

p : Pressure 

Q : Matrix involving q 

q : Normal  derivative of u 

q : Specified q value 

/~ : Normal  derivative of 

r : Radius or radial  distance 

T : Temperature 

U : Matrix involving u 

u : General dependent variable 

tl : Specified u value 

fi : Particular solution variable 

w : Axial flow velocity 

Greek Letters 
a :The rma l  diffusivity or coefficient of inter- 

polating function 

/z : Dynamic viscosity 

/~ : Boundary 

.(2 : Domain 

~b : Linear interpolating function 

0 : Angle 

Subscripts 
i : Source point or inner boundary 

j : Collocation point 

k : Element number 

m : Mean value 

o i Outer boundary 

w : Wall surface 

Superscripts 
, : Fundamental  solution 

1. I n t r o d u c t i o n  

* Department of Mechanical Engineering Jeonju 
University, Jeonju 560-759, Korea 

Among the various numerical methods, the 

boundary element method (BEM) becomes one 
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of the favorite analysis tool ever since its intro- 

duction to the solution of heat transfer problems. 

Its advantage over the finite difference or the 

finite element methods comes from the f:act that 

instead of full domain discretization, only the 

boundary is discretized into elements and internal 

point position can be freely defined. Therefore the 

quantity of data necessary to solve the problems 

can be greatly reduced (Brebbia et al., 1984). 

Until recent years the main area of the BEM 

application has been limited to the conduction 

heat transfer problems among different heat trans- 

fer modes and therefore, with various, research 

efforts, BEM for the solution of heat conduction 

direct or inverse problem is now well established 

(Kane, 1994; Cho i  and Kim, 1996; Cboi, 1997). 

However BEM study for the application of heat 

convection problems can be considered as insuffi- 

cient and in still developing stage. Since the 

convection effects are of considerable i.nportance 

in many heat transfer phenomena, they iced  much 

more research locus. The main difficufties of the 

BEM application to such problems are due to the 

facts that the fundamental solution, are only 

available for the few governing eqm,tion types 

and, except Laplace equation, additiol~al domain 

discretization is required to account s~:~urce type 

domain integral terms (Skerget and R k, 1995). 

The dual reciprocity boundary elem~ .it method 

(DRBEM) which was introduced by N'~rdini and 

Brebbia (1982) is thus far the most successful 

technique for dealing with above menl%ned lack 

of fundamental solution types and dc~,nain inte- 

gral problems. Since its introduction DRBEM 

has been applied in many field of e ~gineering 

problems (Partridge et al., 1992; Partridge, 1995; 

Wrobcl and DeFigueiredo,  1991) In the 

DRBEM, available fundamental solut i  n is used 

for the complete governing equation, a~,~t domain 

integral arising from the heat source-li ,e  term is 

tranferred to the boundary by using ihe radial 

basis interpolation functions (Partrir 1994; 

Yamada et al., 1994). 

This paper presents the application ol' DRBEM 

to the Poisson type equations, and fl~,ly devel- 

oped laminar convection heat transfer problems 

in concentric annulus are illustrated as their 

applicable examples. The concentric annulus is 

chosen because of its simplicity and available 

exact solutions, so that basic nature of the 

proposed method for the convection problems can 

be analyzed and revealed in a detailed manner 

(Kakac et al., 1987; Kays and Crawford, 1993). 

Therefore present research efforts are confined 

within basic study aiming at the establishment of 

DRBEM's applicabil i ty for the heat convection 

analysis to be eventually extended in the future 

study of various heat transfer system. 

In this paper, hydrodynamically and thermally 

fully developed laminar flow with uniform heat 

flux through thermal boundary in a concentric 

annulus is studied by using the DRBEM. To 

verify the methods on heat convection problems, 

numerical solutions with different number of 

boundary element discretizations and internal 

points are compared with the exact solutions for 

its convergence and accuracy. 

2. Formula t ion  o f  the Prob lem 

Consider an incompressible Newtonian fluid 

flow in a concentric annular tube as shown in 

Fig. 1 

/ 

Geometry of the concentric annulus. 
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Fig. 1. In the system to be analyzed, z coordinate 

represents the axial direction and x-y coordinates 

are attached to the cross-sectional surface. The 
inner and outer cylinder radii are taken as r~ and 

to. For the fully developed steady laminar flow 

with constant transport properties and negligible 
body forces, Navier-Stokes equation becomes 
simple pressure-driven Poiseuille flow equation. 
Since the flow is fully developed, axial flow 
velocity is a function of only x-y coordinates, and 

axial pressure gradient is constant. In the energy 
equation, the viscous dissipation and axial heat 

conduction effects are neglected. Therfore the 
governing equation can be expressed in the form 

of a Poisson equation as follows: 

Momentum equation: 

V2 w 3~w. a~w 1 dp (l) 
=~-+ ay 2 --zT-dz 

Energy equation: 

V~T - 327" 4 a2T w a T  
-- 3x z @2 - - a  az (2) 

In these equations, w,/ l ,  p, T, and a ( -  k / p c )  

have their usual meaning of axial flow velocity, 
coefficient of viscosity, pressure, temperature and 
thermal diffusivity, respectively. For the thermally 
fully developed flow with constant heal flux 
boundary condition, Eq. (2) can be rewritten by 

using the mixed mean temperature Tm (Kays and 

Crawford, 1993) as 

42 T c) 2 T __ w dTm (3) 
V 2 T =  aX 2 + 3y~ a dz 

where 3 T  _ dTm =constant  from the given con- 
3z dz 

ditions. The boundary conditions associated with 

the Eqs. (1) and (3) are 

w--O at r - r ~ ,  w--O at r =  ro (4) 

T =  T~ at r=r~ ,  T =  To at r - - r o  (5) 

where subscripts i and o represent for the inner 

and outer surfaces. 
For the solution of temperatures, velocity from 

Eq. (1) is obtained first and then Eq. (3) can be 
solved in sequence since the assumption of con- 
stant viscosity uncoupled the momentum and 
energy equations. 

3. Dual Reciprocity Boundary Element 
Equation 

["or the BEM solution, Eqs. (1) and (3) sub- 

ject to Eqs. (4) and (5) can be generalized as the 
following type of Poisson equation (Partridge et 
al., 1992). 

V 2 u ( x , y ) = b ( x , y ) ,  (x, y) ~22 (6) 

with the boundary conditions: 

u (x, y) = ~, (x, y) ~Fx (7) 

q (x, y) -- au (x, y)___ an - ~ '  ( x , y ) ~ F ~  (8) 

and to represent convective heat transfer prob- 
lems: 

1 d/) = constant u (x, y)  = w, b (x, y)  = t~ dz 

(See Eq. (1)) 

_ w  dT~ 
u ( x , y ) = T ,  b ( x , y ) -  y dz 

(See Eq. (3)) 

where I ] + I ' 2 : l '  is the total boundary of solu- 

tion domain 22, n is the normal to the boundary 
and H and g denote the specified values at each 
boundary. 

Applying the usual boundary element tech- 
nique to Eq. (6), an integral equation can be 

deduced as follows (Brebbia et al., 1984). 

c ~ u ~ + 2 u q * d F - f r q u * d F = f b u * d 2 2  (9) 

where the constant c~ depends on the geometry at 
point i as 

1 for (xi, yi) E22 

c~-- { 20. (10) for (xl, yl) C Y  

where 0 is the angle between the tangent to /1  on 

either side of point i. 

The key method of DRM is to take the domain 
integral of Eq. (9) to the boundary and remove 

the needs of complicated domain discretization. 
To accomplish this idea, the source term b (x, y) 
is expanded as its values at each node j and a set 
of interpolating functions fj are used as (Par- 

tridge et al., 1992; Partridge, 1995; Wrobel and 
DeFigueiredo, 1991) 
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N + L  

b(x, y) ~ ~ ~.s/J (11) ~=a 

where the aj is a set of initially unknown coeffi- 
cients and N + L  is the number of boundary 
nodes plus internal points. If the function //~ can 

be found such that 

V g ~2s = i~ (12) 

then the domain integral can be transferred to the 

boundary. 
Substituting Eq. (12) into Eq. ( l l ) ,  arid apply- 

ing integration by parts twice for the domain 

integral term of Eq. (9) leads to 

f~ f .  N+, 
c,.u~ + u q * d F -  qu*dl '= ~. aj(c~,~ 

d=l  

+ f ,~,~q*dI'-ir~,m*dF ) (13) 

For the two-dimensional domain of interest in 
this study, u*, q* and ~, t] can be derived as 

(Partridge et al., 1992) 

, 1 I ,  
u = ~ - l n  (~-r) (14)  

q* = - ~ l r  27r �9 ff 

~.2 y 3  

~/ ....... 4 t - 9  (15) 
~ _  #" ? ,2 

q = ( 2  + '3-) 27 r �9 ff 

where r stands for the distance from a source 
point i or a DRM collocation point j to a field 
point (x, y) .  As for the Eq. (12), a radial basis 

function f = l  t r is chosen as an interpolating 
function which was shown to be generally suffi- 

cient (Partridge, 1994; Partridge, 1995; Yamada 

et al., 1994). 
In the numerical solution of the integral Eq. 

(13), u, q, z~ and ~/ in the integrals are modelled 
using the linear interpolation functions as 

fr~ uq * dF "- u/,h}/, + Uk+th~k (16) 

f r  q u * d F  q~g]~ + q~+~g~ (17) 

f r  gi.sq* dF--  "~2mh}~ + iir (18) 

f r  0-.su*dF-- i~sg~k+ cTo,+l~g~ (19) 

where 

hIk= f ~,q*dS', h~,<= f. @.~q *dF (20) 

Here the first subscript of Eq. (20) and (21) 
refers to the specific position of the point where 
the flow velocity or temperature is evaluated; the 

second subscript refers to the boundary element 

over which the contour integral is carried out. 
The superscript 1 and 2 designate the linear inter- 
polation function ~b~ and ~b2 respectively, with 

which the u* and q* functions are weighted in 

the integrals in Eq. (16) through (19). 
For the boundary F = F ~ L I I [  discretized into 

N elements, integral terms in Eq. (13) can be 

rewritten as 

~.. 1~] F ,~2 +,A G u 
f ruq*dF--k~] f"  uq*d]'=k~lLr~i(k-1) .~,kj , 

N Nn 

=5"].H~kuk or=~Hikfij~s for f i j  (22) 
k = l  ./=1 

qu*dF '" qu*dl '= ~ [.gilk-,+g~k] qk 
i n k=l 

N Nn 

=~2. Gi~q~ or--~,G~c~ for ~j (23) 
k-i d=l 

where 2 . e hi0 h,:lv and g'~,=g'~%. Introducing Eq. 
(22) and (23) into Eq. (13) and manipulating 
results yields a dual reciprocity boundary element 

equation as 

N N N + L  

cmi + Z ILku~-- ~ G~kqk= ~ aj 
,~=I k = '  3"=1 

N N 
(r l-[,~iika--'~= C;-i~qkj) (24) 

4. Numerical  Solution 

For the computer implementation of numerical 

solution, Eq. (24) can now be written in a matrix 

form as 

t t U -  GQ = ( H ( : -  GQ) a (25) 

where H and G are matrices of their elements 

being Hix and Gig, with c,. being incoroperated 
into the principal diagonal element, respectively. 
U, Q and their terms with hat of Eq. (25) corre- 

spond to vectors of uk, qk and matrices with jth 
column vectors of hat ukj, q~. It is noted that 
vector a of unknown coefficients j can be evaluat- 
ed from Eq. (11) with chosen interpolating rune- 
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tion f~ and the function b(x,  y) of governing 

equation. Therefore introducing the boundary 
conditions into the nodes of  uk and qk vectors 
and rearranging by taking known quantities to 

the right hand side and unknowns to the left hand 
side leads to a set of simultaneous linear equa- 
tions of the form 

A x - B  (26) 

Using the DRBEM matrix equation, the numeri- 
cal solution of laminar convection heat transfer 

problem in a concentric annulus can be readily 
obtained as x being the flow velocity w for 
momentum equation and also temperature T for 

energy equation or their normal derivatives, 
respectively. 

Consider the geometry illustrated in Fig. 2. For 
the sake of  simplification, the surface tempera- 
tures of two cylinders are assumed to be equal. 

Thus, the solution satisfies the following bound- 
ary conditions 

w (x, Y) I t= r , :  w (x, y ) I t= to :0 ,  
T* (x, y) lr= rt = T* (X, Y) lr=ro = 0  (27) 

Node number / ,  
5 3 

5 2 

7 1 

9 ~ i ~ ~ 1 1  

/ coltoca• on or 
/ i n• polnt 

LI near 
boundary et  emen• 

Fig. 2 Boundary element nodes and internal points 
for the system to be analyzed. 

and T * :  T -  Tw, Tw= T~-- To 

As a note, no slip conditions are applied for the 
velocity boundary condition. 

For the numerical test case, following numeri- 

cal values in Eq. (1) and (3) are taken from the 

paper (Sim and Kim, 1996) where the spectral 
collocation method is used for the eccentric an- 
nuli heat convection anlysis. 

r~=0.05 m, ro=0,025 m 

1 dp_=_837.99 (m �9 sec) -1 
/z dz 
a =  1.342 • 10 -9 rnZ/sec 

dTm - 0 . 5  ~  
dz 

5. R e s u l t s  and  D i s c u s s i o n  

In order to confirm the accuracy of the dual 

reciprocity boundary element method for the 
present heat convection problem, each boundary 
of outer and inner surface is equally discretized as 

12, 18, 24, 36 and 48 elements respectively. As for 
the number of internal or DRM collocation 
nodes, 5 nodes across the pair of inner and outer 

boundary element nodal points are located as 
shown in Fig. 2. Therefore total number of  inter- 

nal points used in the analysis are 60, 90, 120, 180 
and 240 for each 12, 18, 24, 36 and 48 boundary 

element cases respectively. 
To obtain the axial flow velocity distribution 

w(x,  y),  Eq. (1) is solved first. Their results for 
the boundary and internal nodes are shown in 

2O 

18 

14 

Fig. 3 

0 : r w 0.02g rn 
x : r -  0,033 m 

G.~ A : r m 0,037 m 
D : C t  0.042 m 

5O 
Number of  elellle~lt at u c h  boIJ~ndary 

Accuracy test for the velocity solution at the 
selected internal points. 
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Table 1 DRBEM results with exact solutions for the boundary and internal locations in flow velocity analysis. 

Solution 

Variable 

~gw / r)n 

Ow/~n 

Radial 

Location 

09 

0.050 

0.025 

0.029 

0.033 

0,037 

12 

.... 8~7914 

-12.8556 

0.045760 

0.067479 

0,072513 

DRBEM Solution 

(number of boundary elements case) 

18 

-9.2518 

-12.4808 

0.042787 

0,064041 

0.068996 

24 36 

-9.4117 -9.5253 

--12.3530 -12.2634 

0.041643 0.040784 

0,062800 0.061907 

0.067733 0.066829 

0,058339 0,057435 

0.035864 0.035054 

48 

-9.5648 

-12,2324 

0.040476 

0,061594 

0.066513 

Exact 

Solution 

-9.61571 

-12.19320 

0,040077 

0.061190 

0.066108 

w 0,042 0,062889 0,059576 0.057118 0.056710 

W 0.046 0.039932 0.036911 0,034749 0,034346 

Table 2 DRBEMresults  with exact so lu t ionsfor the  boundary and internal locat ionsin  temperature analysis 

(T*=Tw--T) ,  

Solution 

Variable 

Radial 

Location 

(r) 12 

DRBEM Solution 

(number of boundary elements case) 

18 24 36 48 

Exact 

Solution 

8T*/On 0.050 182861.2 181225.9 1 8 0 4 2 1 . 1  179821.5 179669.9 181363.4 

8T*/3n 0.025 255844.9 251946.1 250847,8 250063,7 249795.8 251872.1 

T* 0.029 980.08 943.45 932.53 925.09 922.61 923.73 

T* 0.033 1558.05 1512.78 1500.47 1491.94 1488.83 1488.79 

T* 0.037 1699.77 1647.50 1633.81 1624.86 1621.71 1621.76 

T* 0.042 1417.04 1368.80 1353,28 1344.21 1341.61 1342.60 

T* 0.046 1261.09 780,38 753.08 748.90 746.48 748.05 

10 

g 

8 

7 

ge 

J: 
3 

2 

Fig. 4 

0 ; fw 0.026 m 

1 

10 15 20 25 30 35  40 4a 80 
Number of elemqtftt M each tX)Ul~laty 

Accuracy test for the normal derivative of 
velocity solution at the inner and outer 
boundaries. 

Table  1. Here the normal  derivat ive of  velocity w 

at the boundary  is listed as well, and all the 

numerical  solutions are compared  with the exact 

solutions (Kays and Crawford ,  1993) for their 

accuracy. Figures. 3 and 4 show the convergence 

plot  of  D R B E M  velocity and its normal  deriva- 

tive solutions as the number  o f  boundary  elements 

and internal points  increase. D R B E M  solutions 

are in close agreement with the exact solutions 

and relative errors are within 5% ['or the above 24 

element cases. As noted in Fig. 3, velocity solu- 

tions at locat ion o f  r=0 .046  and r=0 .029  are less 

accurate than the others and, in between, r=0 ,046  

point gives more inaccurate solut ion than r = 0 .  

029. And for the normal  deriw~tives of  velocity at 



502 Chang- Yong Choi 

0.1  ,, . . . . . . . . . . .  . , . ,  .. 

0.09 l - -  : am~t ~olu~on 
| o : 48 elmnen~ 

0,070'08 f ~ :24elomoIIhz 

/ \ 
\ 0 , 0 2  

0 . 0 1  

0 L  i i i . L 
0 . 0 2 5  0 . ~  0 , 0 3 5  0 , 0 4  0 . 1 ~ 8  0 . 0 6  

Radial ~ (m) 

Fig. 5 Velocity profile of exact solution compared 
with DRBEM results. 

Fig, 6 

J i .. 
'" ~5 2'o ~'~ ~ ~'- ~ ~5 

NumWt of etement lit ~ boundary 

Accuracy test for the temperature solution at 
the selected internal points. 

Radial Iocttk~ 
0 : r m 0.(]20 m 
x : r-, 0.033 rn 
,~. : r m 0,037 m 
D : r = 0.042 m 
O : f ~ 0.046 m 

1 0  , �9 

t 

boundary r=0.05 is less accurate than r=0.025 as 

shown in Fig. 4. These results are due to the facts 

that the outer boundary element size is larger than 

the inner boundary element size and distribution 

of internal points is getting sparse to the outward 

direction, whereas rapid change of velocity occurs 

at inner and outer boundary sides as illustrated in 

Fig. 2 and 5. Therefore solution's error magnitude 

regarding to the radial location is closely related 

to both the physical and the mathematical aspects 

and nevertheless overall solution accuracy is 

shown to be fairly acceptable. However 12 ele- 

ment solution case shows maximum 16.3% error 

at radial position r=0.046 and later results in 

very inaccurate temperature solution. 

Then these DRM velocity solutions are, in turn, 

used in the energy equation (Eq. (3)) to solve for 

the temperature distribution, Table 2 shows the 

2 f ' ' . . . .  '..d. ~ , . .  
1,8 O : r -  0.026 m 

a : r .  0.080 m 
1.6 

1,4 

~ 1,2 

1 5  2 0  2 5  3 0  3 5  4 0  4 6  611 
Numl~r of element at each boundary 

Fig. 7 Accuracy test for the normal derivative of 
temperature solution at the inner and outer 
boundaries. 

0 , , , , 

-200 k --  : oJact t o lu~  / ~  / -400 A : 24 elemen i .  

i ' I \  / 
i - t 2 1 ~  

- 1 0 0 0  

-18 ; ........... 0,03 . . . . .  0.O.45 ..... 0.05 
Radial I ~ o n  tin) 

Fig. 8 Temperature profile (T*=T--Tw) of exact 
solution compared with DRBEM results. 

results, and it is found that DRM solutions are in 

excellent agreement with exact solutions and rela- 

tive errors are within 1% for the above 24 element 

cases (see Fig. 6 and 7). Although the converging 

trend in Fig. 7 is not monotonic and radial loca- 

tion effect about error magnitude is not exactly 

following the previously discussed velocity solu. 

tion case, solution trends can be considered as 

indistinguishable within i% relative error. These 

test results validate the power of dual reciprocity 

boundary element method and its solution accu- 

racy, since the numerically solved velocity was 

used as an input in Eq. (3) and source-like 

function b(x, y) of Eq. (11) in Eq. (3) is approx- 

imated with interpolating function and nodal 

values of internal points. As a final note, the 12 

element case turns out to be inadequate for the 
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solution of this probelm. Error of the velocity 
solution is amplified, and unacceptable tempera- 

ture solulion error of 68.5% is observed at radial 

location r =0.046. 

6. Conclusions 

A dual reciprocity boundary element method 
has been presented for the solution of laminar 
heat convection problem in a concentric annulus 

imposed with constant heat flux. DRBEM matrix 
is formulated to perform the numerical implemen- 
tation, and five cases of boundary element discret- 
ization are tested with the corresponding number 
of internal points. Five radial locations are 

selected to obtain the velocity and temperature 

solutions. Test results are shown to be in excellent 
agreement with exact solutions for the above 24 

element case. However 12 element case results in 
inaccurate solution and errors are shown Io be 
amplified in solving the energy equation. As a 
final remark, recently developed dual reciprocity 
boundary element method is successfully applied 
io solving the laminar heat convection problem in 

a concentric annulus, and also current study 
shows its broad potentiality for further applica- 

tions. 
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